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An iterative method based on perturbation theory in matrix form is described as a proce-
dure to obtain the eigenvalues and eigenvectors of square matrices. Practical vector notation
and elementary schematic algorithm codes are given. The particular programming charac-
teristics of the present computational scheme are based upon eigenvector corrections, ob-
tained through a simple Rayleigh–Schrödinger perturbation theory algorithm. The proposed
methodological processes can be used to evaluate the eigensystem of large matrices.

1. Introduction

Recently, the authors have published various papers dealing with several aspects
of perturbation theory (PT). In ref. [1], the foundation of the Rayleigh–Schrödinger
PT (RSPT) framework in matrix form was described, possessing a sufficiently general
structure as to deal with several perturbation matrices or operators at the same time.
Other recent and old papers of our Laboratory have dealt with general aspects of the
formal problem associated with RSPT [2,5–12].

The present work is also related to the RSPT formalism and intends to describe an
iterative algorithm, which may be useful to achieve the diagonalization of a general
square matrix. The theoretical formalism will be developed first, and the practical
algorithms will be given afterwards.

From the previously described RSPT matrix formalism [1], it is straightforward
to build up a connected vector notation, useful for the perturbative resolution of a
given eigenvalue–eigenvector pair. Within the quantum mechanical framework, this is
equivalent as to find a particular system’s state.

2. General theory

The goal of the present paper is to discuss a new procedure useful to numerically
solve the algebraic eigenvalue problem. The method which will be developed here can
be applied to any kind of general square matrices, including hermitian or symmetrical
ones.
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Diagonalization of a general square matrix H, possessing real or complex eigen-
parameters may be considered as the way of solving the secular equation

HZ = ZE, (1)

where the Z and E matrices contain in their columns and diagonal elements, respec-
tively, the eigenvectors and eigenvalues of matrix H.

Diagonalization of matrix H can always be formulated in an intermediate form
such as to find the eigenparameters of the matrix defined as

H = Z0R0(Z0)−1 (2)

and the matrix R0 can be expressed by the sum

R0 = E0 + P0, (3)

where E0 is a diagonal matrix and P0 acts as a perturbative term. A related point of
view may also be found in the Collar and Jahn’s diagonalization method [15].

Some examples, where the previous framework applies, can be given as follows:

(1) When starting up a diagonalization problem. The trivial approach considers the
following identities:

R0 = H ∧ Z0 = (Z0)−1 = I. (4)

According to equation (3), the matrix R0 can be organized using the pattern

E0 = diag{H} ∧ P0 = outdiag{H}, (5)

where the following definitions are used:

A = diag{H} =
{
aii = hii ∀i ∧ aij = 0 ∀i 6= j

}
(6)

and

B = outdiag{H} =
{
bii = 0 ∀i ∧ bij = hij ∀i 6= j

}
. (7)

(2) When looking at an intermediate form of several diagonalization procedures. For
instance, the well-known iterative Jacobi [16] method, at every cycle of the process
the transformation (2), uses the matrix Z0 chosen to be orthogonal. Such a method
drives the matrix P0 to become the null one at the iteration limit. At the end of
the procedure the eigenvectors of matrix H are stored as columns in Z0 and the
eigenvalues in the diagonal of R0 = E0.

(3) When analyzing the RSPT scheme. This is the case which will be considered
here.
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3. Theoretical basis of the proposed algorithm

RSPT is formulated in such a way as to achieve the diagonalization of the so
called perturbed matrix, H, which is expressed in terms of a unperturbed matrix, H0,
plus a perturbation matrix, V:

H = H0 + V. (8)

The diagonalization of H supposes the previous knowledge of the unperturbed system
solution, which can be attached to the secular equation eigenparameters:

H0Z0 = Z0E0, (9)

and this entirely gives the information defining a typical PT problem. Thus, in this
study, the set of involved input data, constituting a given PT problem, will be expressed
by means of the following ordered row hypervector:

(H, H0, V, Z0, E0), (10)

which can be used as a shorthand representation of equations (8) and (9). It will be
called from now on a PT problem vector.

Within the PT scheme, the unperturbed eigenvectors, collected in the matrix Z0,
are used as the working basis set, the reference space, which expands a vector space of
the same dimension as the one attached to all the involved matrices. The unperturbed
vectors are linearly independent and, thus, can be considered orthonormalized without
loss of generality. It is easy to realize that they can act as a canonical basis set, if the
proper definitions are taken into account. From equation (9), expressing H0 as

H0 = Z0E0(Z0)−1 (11)

and defining the following similarity transformation over the perturbation matrix V:

P0 = (Z0)−1VZ0, (12)

it is straightforward to express the perturbed matrix to be diagonalized in the same
notation as the one used in equations (2) and (3). That is, diagonalization of matrix H
has been reduced to solve the diagonalization of matrix R0, appearing in equation (2).
In other words, the PT problem vector has been brought to solving the following
transformed one, defined by the new PT problem vector

(R0, E0, P0, I, E0). (13)

The presence of the unit matrix in equation (13) connects the original unperturbed
basis set to the canonical one.

At this stage, the diagonal values of the matrix R0 can be freely manipulated, for
instance, expressing the whole matrix as the sum

R0 = Rd + Ru, (14)
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where Rd is a diagonal matrix, and Ru acts as a perturbational term. Obviously, as an
example of the whole theory, expression (3) could be considered as a particular case
of the sum (14).

There are various choices to perform such an arbitrary splitting as the one depicted
in equation (14), and some of them are commented in ref. [2]. This extra degree of
freedom can be particularly useful to override intermediate degeneracy problems or, in
general, to enhance the method’s convergence [2]. Moreover, the presence of non-zero
diagonal elements in the Ru matrix indicates that new corrections are to be added to
the eigenvalues. This explains why, in some cases, the method converges faster if, at
every iterative step, the principal diagonal of the Ru matrix is set to zero and their
elements are added to the corresponding Rd matrix ones. This option implies, in the
RSPT scheme, that first order eigenvalue corrections become null [2].

Now, diagonalization of matrix R0 by means of the PT problem vector can be
handled using the decomposition (14), and may be transformed into the new PT prob-
lem vector

(R0, Rd, Ru, I, Rd). (15)

From the numerical point of view, PT problem vectors (13) and (15) are not equivalent.
However, from the mathematical point of view, they define the same diagonalization
problem. Therefore, and from now on, we will refer to equation (15) as the represen-
tative of both choices.

At the present situation of the procedure, it can be supposed that a suitable
method is available to provide a correction matrix, Θ1, associated to the canonical
eigenvectors I, appearing in the PT problem vector (15). Optionally, another diagonal
matrix correction, ∆1, attached to the related eigenvalues contained in Rd could be
also made at hand. Both corrections are to be seen as an approximation to the R0

eigenparameters. As matrix R0 will not be, in general, symmetric along all the iterative
process, it is important to note here that a method, as the one presently described, must
be suitable to compute the corresponding corrections, even when applied over a general
matrix diagonalization problem. For example, these corrections can come from the
RSTP framework. In this case, the correction matrix Θ1, can be the first eigenvector
correction or a sum involving the lower order ones. The same can be said with respect
of the eigenvalues.

Once the correction matrices Θ1 and ∆1, are known, a new set of approximate
unnormalized eigenvectors and eigenvalues can be defined for the perturbed system
matrix R0, appearing in the PT problem vector:

Z1 = I + Θ1 ∧ E1 = E0 + ∆1. (16)

In general, these approximations will not diagonalize the perturbed system matrix R0,
but the new matrix pair {Z1, E1} can be considered the eigenparameters of some
matrix H1, which is defined by the following similarity transformation:

H1 = Z1E1(Z1)−1. (17)
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The basic idea of the method, which is being described here, uses the assumption
that the new matrix H1 can act as a new unperturbed system and, then, the matrix R0

diagonalization, associated to the PT problem vector (15), can be rewritten as a new
PT problem vector:

(R0, H1, V1, Z1, E1), (18)

which uses the information supplied by the new matrix pair, defined in equation (16).
It is only necessary to furnish an explicit form for the new perturbative term V1, which
will be defined as

V1 = R0 −H1. (19)

In order to construct an iterative procedure, the PT vector problem (18) must be
rewritten again in terms of the notation present within the PT vector problem (15).
This can be performed defining a new transformed perturbation matrix P1 as

P1 = (Z1)−1V1Z1, (20)

and a new form for the matrix R0 can be deduced from expression (17):

R0 = Z1(E1 + P1)(Z1)−1. (21)

This allows writing the matrix to diagonalize H using equations (2) and (21) as

H = Z0Z1(E1 + P1)(Z1)−1(Z0)−1. (22)

The previous expression shows how an effective step has been done, in order to
diagonalize H.

A correction has been made involving the matrix Z0, and the central bracketed
term has to be expected more diagonally dominant than R0 or H. The formulation
described until now is related to the so-called refinement method [14].

The required information is now prepared to start a new iteration. As equa-
tion (22) shows, the diagonalization of matrix H will be the same as to solve the
diagonalization of the central bracketed term, taken as the following PT problem vec-
tor:

(R1, E1, P1, I, E1), (23)

which can be identified, in turn, with the former PT problem vector (15). This signals
the possible way to restart the process, just from the PT problem vector (15), and
construct the full computational procedure in an iterative manner.

The previous process can be repeated until convergence. At the kth iteration
step, the procedure described above will lead to a generalization of the expression (22),
which constructs, in turn, the original matrix to be diagonalized. Defining the matrix
product: Z(k) = Z0Z1 · · ·Zk; then

H = Z(k)(Ek + Pk)
(
Z(k))−1

. (24)
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Due to the successive insertion of eigenvalue and eigenvector corrections of the
kind described in equation (16), the method can converge to the diagonalization of
the matrix H when k → ∞. The best test for convergence achievement could be the
computation of some appropriate norm of the matrix outdiag{Ek + Pk}, appearing in
equation (24). In the case that this matrix part becomes negligible, then this will mean
that no longer exists a relevant perturbation. So, the diagonalization of matrix H can
be considered complete.

Along the iterative process, several sets of matrices are generated:

(1) The sequence of eigenvector corrections, {Z0, Z1, . . . , Zk, . . .}, which will pro-
duce, upon applying to them a sequential multiplication, a set of unnormalized
eigenvectors for matrix H:

Z = Z0Z1 · · ·Zk · · · . (25)

(2) A sequence of successive approximations to the eigenvalues of matrix H:
{E0, E1, . . . , Ek, . . .}, which will converge towards the eigenvalues of matrix H,
producing the diagonal matrix

E = lim
k→∞

Ek. (26)

In the same manner as occurs in the usual PT schemes, the set of eigenvalue
approximations allows to define the sequence of successive eigenvalue corrections:{

E(1) = E1 − E0, E(2) = E2 − E1, . . . , E(k) = Ek − Ek−1, . . .
}
.

(3) A sequence of perturbation matrices {P0, P1, . . . , Pk, . . .}, which will converge
towards the zero matrix

0 = lim
k→∞

Pk. (27)

(4) A sequence of matrices {R0, R1, . . . , Rk, . . .}, which due to the previous conditions,
will also tend to be diagonal and identical to the eigenvalue matrix E

E = lim
k→∞

Rk = lim
k→∞

Ek. (28)

The basic descriptive ideas, which are the principal features of the proposed algorithm,
can be resumed as follows:

1. A general PT or diagonalization problem is defined by means of the equations (10),
(13) or (15).

2. Some eigenvalue and eigenvector corrections of the unperturbed system are ob-
tained in order to approximate those of the perturbed one in equation (16).

3. The previous eigenparameter set corrections define a new matrix, which will be
considered as a new unperturbed system in equation (17). This feature requires
redefining the perturbation term as shown in equations (19) and (20).
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4. The original PT problem is reformulated using the new unperturbed system defined
in the previous step in equation (23).

5. Iterate to step 2 until convergence.

Due that, in step 3 above, a new unperturbed system matrix is defined, their
eigenvectors generate, in turn, a new active space. Therefore, the working basis set
is evolving at every step throughout the procedure. This constitutes an important
difference with respect to the well-known RSPT framework, where the working basis
set, Z0, is kept fixed from the beginning. Due to this characteristic, the proposed
present procedure may be called autoadjusting perturbation theory (APT). As it will
be shown below, such an algorithm converges faster than the usual RSPT scheme.
Also, due to its iterative nature, the cost of the method is a linear function of the
number of needed corrections.

In order to schematize the procedure outlined in the above discussion, there are
described three possible algorithms, allowing the easy implementation of the theoretical
framework.

4. General matrix algorithm

Algorithm 1 presents the computational matrix implementation of the described
procedure. The algorithm is optimized in the sense that a minimal number of matrices
must be kept within the computer RAM. Apart from the PT problem vector input data:
(H, H0, V, Z, R), two additional process parameters are also needed, the procedure
tolerance, ε, and the allowed maximal number of iterations, kmax.

The eigenparameters of matrix H are returned within the same input matrices:
Z will contain the eigenvectors and R the eigenvalues. Then, algorithm 1 constitutes
a destructive procedure: a diagonalization procedure destroying the original eigen-
parameters. It is straightforward to modify it and transform the algorithm into a
non-destructive one. In algorithm 1, the method, which supplies the eigenvector cor-
rections, is the RSPT. Either first or second order eigenvector RSPT corrections can be
used. The algorithm becomes slightly simplified if it is applied to solve a matrix diago-
nalization. For this case the unperturbed system can be taken to be H0 = diag{H} = R,
with the canonical eigenvectors collected in the unit matrix, the eigenvalues contained
in the matrix R and the perturbation matrix is defined as V = outdiag{H}. For this
case, step 2 of the algorithm is irrelevant.

5. Vector algorithm

The bottleneck of algorithm 1 is found in the inversion of matrix Zc at step 8a.
Also, the similarity transformations of the kind: (Zc)−1RZc, found in step 8b and the
product ZZc, found in step 7b, are time consuming procedures. These characteristics
lead to design a practical algorithm, which performs the search of one eigenvalue with
the corresponding eigenvector at a time.
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If only the pth vector of the active space is allowed to be transformed and the
remaining unperturbed eigenvectors of matrix H0 are kept fixed, the correction matrix
Zc generated at step 7a of algorithm 1 takes the form

Zc = I + W, (29)

where the (n×n) matrix W contains the eigenvector correction. When such a correction
is supplied by the RSPT, it is well known that matrix W can be expressed as the null
matrix, where the pth column has been replaced by a column vector w, whose elements
are defined by

w =
{
wkp ∀k 6= p ∧ wpp = 0

}
. (30)

The zero value attached to the element wpp is particularly useful due to the following
reasons:

(a) The product between the matrices Z and Zc, found at step 7b of algorithm 1, only
adds to the pth column of matrix Z a column vector s, defined by means of the
following product:

s = Zw. (31)

(b) Owing to the characteristic structure of the matrix Zc, as previously defined in
equation (29), posses an inverse, which must be computed at step 8a of algorithm 1,
may be simply written as

(Zc)−1 = I −W. (32)

Thus, the explicit expression for the transformation performed over the matrix
R = {rij}, found in step 8b of algorithm 1, is computed now by the following set
of transformations:

a) i = p, j = p: rpp ← rpp + Rp:w,

b) i 6= p, j = p: rip ← rip + Ri:w − wip(rpp + Rp:w),
(33)

c) i = p, j 6= p: rpj ← rpj ,

d) i 6= p, j 6= p: rij ← rij − wiprpj ,
where the notation Ri: stands for the ith row vector of matrix R.

All the submatrices of the involved matrices, remaining constant along the
process, do not need to be stored in fast memory. The relevant vectors, which should
be present, are w and s. Expression (33) founds its most effective implementation
when applied to the diagonalization of large matrices.

6. Application to the diagonalization of large matrices

If the APT method will be applied when the matrix R to be diagonalized is very
large, it is well known that, usually, their elements are not stored in memory but can be
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recalculated every time they are needed. The vector s, defined in equation (31) plays
the same role as the one found in the Davidson [13] or Nesbet [17] diagonalization
algorithms. In this manner, the implementation of the APT algorithm does not require
any extra programming effort.

One of the advantages of the present method lies in the fact that successive
transformations over the eigenvectors, expressed in step 7b of algorithm 1, can be
conceived as a unique transformation. In other words, as such corrections are addi-
tions over a column, it is only necessary to store all of them into a unique vector,
which acts as an algorithm reservoir. Such is the reason why the APT method does
not need a large amount of computer memory or extraordinary hard disk require-
ments.

Algorithm 2 describes the vector procedure. The successive eigenvector correc-
tions are obtained from the first order RSPT scheme. When using algorithm 2, the
convergence of the method decreases slightly with respect to the algorithm 1 per-
formance, due to the fact that n − 1 of the active space basis set vectors are kept
constant. Despite of this characteristic, the entire procedure becomes faster that the
equivalent PT procedure and a minimal amount of computer memory is needed. This
permits to implement the algorithm in order to perform the diagonalization of large
matrices.

Algorithm 3 is the partner of algorithm 2, but the eigenvector corrections are
computed by means of a RSPT scheme going up to second order. The convergence of
the method is ameliorated in a noticeable manner; however, this has its drawback: the
bottleneck of the process, consisting in the operations equivalent to the computation
of the s vector, have to be performed in algorithm 3 twice at every cycle in steps 6a
and 6e. Also, the implementation of second order eigenvector corrections needs an
additional auxiliary vector, z(a).

In algorithms 2 and 3 a particular kind of residual vector is computed, the δ
parameter used in steps 3d and 6d, respectively. Other choices can be considered.

7. Numerical results

Table 1 presents some numerical results obtained after application of the APT
algorithm. Some Hilbert-like matrices were diagonalized using both, the APT and the
RSPT vector algorithms. These matrices are defined as the Hilbert ones, but scaling the
non-diagonal terms by a factory γ, in order to make them more diagonally dominant,
if needed. Their elements are defined by means of

H =

{
Hii =

1
2i− 1

∀i ∧ Hij =
γ

i+ j − 1
∀i 6= j

}
. (34)

The eigenvector attached to the largest eigenvalue has been found for several
cases. APT algorithm obtains the vector corrections using first or second order RSPT
at every iterative step. The tolerance for the APT routine was set to 10−10 in order to
achieve a very precise result. The quadratic error between the obtained and the exact
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Table 1
Numerical results obtained using the APT algorithm. RSPT algorithm diverges in most cases and when

convergence is achieved it requires much more iterations. See also figures and text for meaning.

Calculation Matrix γ Order of the Number of Computed Quadratic error
number order coefficient PT corrections iterations eigenvalue in eigenvector

1 10 1/2 1 15 1.225121522 5.843 × 10−11

2 10 1/2 2 10 1.225121522 3.993 × 10−11

3 100 1/2 1 26 1.340201069 2.965 × 10−10

4 100 1/2 2 13 1.340201069 7.362 × 10−11

5 100 2/5 1 25 1.209680361 3.814 × 10−10

6 100 2/5 2 12 1.209680360 2.575 × 10−10

7 100 1/3 1 23 1.138587683 4.595 × 10−10

8 100 1/3 2 12 1.138587683 6.041 × 10−11

9 1000 1/2 1 36 1.404512233 1.694 × 10−9

10 1000 1/2 2 18 1.404512233 7.381 × 10−10

eigenvector is also shown. For small matrices the exact eigenparameters are obtained
from a Jacobi routine, while for the (1000 × 1000) matrix a standard Davidson [13]
algorithm was used.

APT obtained data were compared against the results coming from a RSPT vector
program [2]. In many cases the RSPT procedure diverges. Only for calculations 7
and 8, RSPT convergence is achieved but more eigenparameter corrections are needed
in order to reproduce the APT algorithm results. This shows how, in general, APT
algorithm converges faster than the RSPT one.

In figures 1–7 it is visually analyzed the convergence behavior of the algorithms
studied in this work. Figures 1, 3 and 7 show the convergence capabilities for calcula-
tions of the three algorithms (APT using first and second order eigenvector corrections
and RSPT procedure) with respect to the number of iterations in APT routines. These
figures correspond to the calculations 1 and 2, 3 and 4, and 9 and 10 of table 1,
respectively. The number of iterations of the APT method, when using first order
PT corrections, coincide with the correction order found in the usual RSPT. Fig-
ures 2, 4, 5, and 6 show the logarithm of the absolute difference between the exact
eigenvalue and the actual one, obtained at every iteration for the algorithms used in
calculations 1 and 2, 3 and 4, 5 and 6, and 7 and 8 of table 1, respectively. In
all cases the first and second order APT methods give better results than the RSPT
one.

8. Conclusions

Matrix and vector forms of a new and very general diagonalization procedure
based on PT have been described. It has been shown how the computer implementation
of the APT related algorithms is straightforward.
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Figure 1. Convergence behavior of calculations 1 and 2 of table 1 for the three studied algorithms with
respect to the number of iterations. Methods are: first order PT corrections in APT algorithm (big circles),

second order eigenvector corrections in APT algorithm (stars) and RSPT results (small circles).

Figure 2. Logarithm of the absolute difference between the exact eigenvalue and the one obtained at
every iteration and for each method in calculations 1 and 2 of table 1. Methods are: first order PT
corrections in APT algorithm (big circles), second order eigenvector corrections in APT algorithm (stars)

and RSPT results (small circles).
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Figure 3. Convergence behavior of calculations 3 and 4 of table 1 for the three algorithms with respect to
the number of iterations. Methods are: first order PT corrections in APT algorithm (big circles), second

order eigenvector corrections in APT algorithm (stars) and RSPT results (small circles).

Figure 4. Logarithm of the absolute difference between the exact eigenvalue and the one obtained at
every iteration for each method in calculations 3 and 4 of table 1. Methods are: first order PT corrections
in APT algorithm (big circles), second order eigenvector corrections in APT algorithm (stars) and RSPT

results (small circles).
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Figure 5. Logarithm of the absolute difference between the exact eigenvalue and the one obtained at
every iteration for each method in calculations 5 and 6 of table 1. Methods are: first order PT corrections
in APT algorithm (big circles), second order eigenvector corrections in APT algorithm (stars) and RSPT

results (small circles).

Figure 6. Logarithm of the absolute difference between the exact eigenvalue and the one obtained at
every iteration for each method in calculations 7 and 8 of table 1. Methods are: first order PT corrections
in APT algorithm (big circles), second order eigenvector corrections in APT algorithm (stars) and RSPT

results (small circles).
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Figure 7. Convergence behavior of calculations 9 and 10 of table 1 for the three algorithms with respect
to the number of iterations. Methods are: first order PT corrections in APT algorithm (big circles),

second order eigenvector corrections in APT algorithm (stars) and RSPT results (small circles).

As an overview of the mathematical and practical characteristics of the APT
method, some advantages can be stressed again:

• As APT algorithm is iterative, no error accumulation is found. The final error is
given by the last iteration.

• Only a few vectors must be kept in memory and this feature allows the treatment
of huge matrices.

• The method can be applied to the diagonalization of any matrix column if the
matrix is properly conditioned. The convergence is ensured for strongly diagonally
dominant matrices as those found in typical CI calculations and in other scientific
fields [3,4].

• The involved algebra is general and the method can be used over any kind of square
matrices.

• Finally, APT converges in all studied cases, while RSPT clearly shows a divergent
behavior.
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Appendix

Algorithm 1. APT full matrix diagonalization procedure.

Solves the perturbation problem: H = H0 + V where the eigenparameters {Z, R}
of H0 are known. The algorithm returns the solution in the same Z and R matrices:
at the end of the procedure the equality: HZ = ZR is obtained if convergence is
achieved.

1. Initializations. Set: k = 0. Iterations counter.
kmax > 0. Maximal number of iterations.
ε > 0. Process tolerance.

2. R = E + Z−1VZ.

3. Compute a norm for the non diagonal part of R: N0 = | outdiag{R}|.
4. If N0 < ε, then: Stop procedure. Convergence achieved.

Else if k = kmax then: Stop procedure. Convergence not achieved.

5. Create a R matrix perturbation problem: Split R into the sum R = Rd+Ru, where
Rd = diag{R} and Ru = outdiag{R}.

6. Obtain a first order correction matrix, Zc, for the Rd eigenvectors (the canoni-
cal basis set I), in order to obtained a suitable approximation for the R matrix
eigenspace:

Zc =

{
zij =

Rij
Rii −Rjj

∀i 6= j; zii = 0

}
.

If second order corrections are to be used, then the following substitution holds:

zij ← zij −
[RuZc]ij
Rii −Rjj

∀i 6= j.

7. Update (a) Zc ← I + Zc;
(b) Zc ← ZZc.

8. (a) Compute (Zc)−1;
(b) Update R← (Zc)−1RZc.

9. k ← k + 1. Go to step 3.
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Algorithm 2. First order vector APT diagonalization procedure algorithm.

Finds one eigenvalue {e} and the related unnormalized eigenvector {z} of a
(n × n) matrix R. The pth column of the matrix is diagonalized. Uses first order
RSPT corrections.

1. Initializations. Set: k = 0. Iteration counter.
kmax > 0. Maximal number of iterations.
1 6 p 6 n. Column to diagonalize.
ε > 0. Process tolerance.
δ =∞. Convergence test.

2. z = {zi =
Rip

Rpp−Rii ∀i 6= p; zp = 1}: first order eigenvector corrections.

3. Do while δ > ε and k < kmax:
(a) s = Rz.
(b) e = sp: actual eigenvalue approximation.
(c) Add new first order eigenvector correction.

Here, the new eigenvector approximation is obtained:

zi ← zi +
si − zie

e−Rii + ziRpi
∀i 6= p.

(d) δ = 1
n

∑
i6=p |si − zie|: new column residual.

(e) k ← k + 1: increment iteration counter
end do

4. If δ > ε then the procedure has not converged. Stop process.

5. Stop procedure: convergence achieved.
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Algorithm 3. Second order vector APT diagonalization procedure.

Finds one eigenvalue {e} and the related unnormalized eigenvector {z} of a
(n × n) matrix R. The pth column of the matrix is diagonalized. Uses second order
RSPT corrections.

1. Initializations. Set: k = 0. Iterations counter.
kmax > 0. Maximal number of iterations.
1 6 p 6 n. Column to diagonalize.
ε > 0. Process tolerance.
δ =∞. Convergence test.

2. z = {zi =
Rip

Rpp−Rii ∀i 6= p; zp = 1}: first order eigenvector corrections.

3. z(a) = z: auxiliary vector.

4. s = outdiag{R}z(a): second order eigenvector corrections.

5. zi ← zi + si
Rpp−Rii ∀i 6= p: first and second order eigenvector corrections.

6. Do while δ > ε and k < kmax:
(a) s = Rz: updates the global Rz transformation.
(b) e = sp: actual eigenvalue approximation.
(c) Keeps new first order eigenvector corrections.

z(a)
i =

si − zie
e−Rii + ziRpi

∀i 6= p.

(d) δ = 1
n

∑
i6=p |si − zie|: new column residual.

(e) s = outdiag{R}z(a).
(f) Computation of the second order eigenvector corrections.

The new eigenvector approximation is also obtained:

si ← si − zi
∑
j 6=p

Rpjz
(a)
j ∀i 6= p;

zi ← zi + z(a)
i +

si
e−Rii + ziRpi

∀i 6= p.

(g) k ← k + 1: increment iteration counter
end do

7. If δ > ε then procedure has not converged. Stop process.

8. Stop procedure: convergence achieved.
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[11] R. Carbó and R. Gallifa, Nuovo Cimento 17 (1973) 46.
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